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Pulse Propagation in Multimode Fibers

with Frequency-Dependent Coupling

RICHARD STEINBERG

Abstract—Marcuse’s time-dependent coupled power equations
are rederived so as to include the frequency dependence of the
coupling coefficients. For the case of white-noise coupling, the solu-
tion is then expressed simply in terms of that for frequency-inde-
pendent coupling.

HE FOURIER transform of the electromagnetic field

in an optical fiber may be represented as an expansion
in the structure’s normal modes. The coefficients of this
expansion are called mode transfer functions.

Marcuse’s derivation of coupled power equations [1]
can be carried over step by step to derive an analogous
set, of equations for the covariances of the mode transfer
functions ’

Lu(zimw) = (Li(z50 + w1) [1*(2j0) ). (1)
When this was done the following perturbation equations
were obtained:
Al
dz

+ (o + jou) Lnr = 7%62D 3 { Koy K™ Lium

mstk
= 3L Kimen [P + | K P10} (2)

Ti(w) = ai + jBi{w) is the propagation constant of the
kth fiber mode in the absence of coupling. The subscript
w; denotes evaluation at (w + wi1). or(w,ws) is defined by
Br, = B + o The coupling coefficients K. have been
determined for both the dielectric slab [57] and round
dielectric fiber [6] and are independent of distance z along
the fiber.

It was first assumed that the physical imperfection
responsible for coupling the modes had a Gaussian-shaped
correlation function characterized by parameters ¢ and
D, respectively, the rms amplitude and correlation length
of the imperfection [17. Equation (2) was derived by
assuming D sufficiently small

[ (Br — B)D |max K 1. (3)

Equivalent to the assumption of white-noise coupling,
(3) simplifies the calculations considerably.

Subject to (3), Marcuse’s power coupling coefficients
become [5] :

him = w2520 I Kin '2 = [y I Ky Ig. (4)
Considering the i as functions of frequency, the follow-
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ing arithmetic and geometric means are defined [37]:
Bin® = F (him + Pimey) (5)
hkmg = (hkmhkmwx)llz - DOKkm*Kkmwl- (6)

The last identity in (6) follows from (4), (14), and the fact
that the K., are purely imaginary.
Using (5) and (6), (2) becomes

al .
e (or + Jor) Lo + 2 VoL e, == Pom® i1} (7)
dz mEk
It is now assumed that the kth mode is far enough above
cutoff and the range of w: is sufficiently small such that

Bi(wo + w1) =2 Bro + B, | w1 | << wo (8)
It follows from (8) that
op{wwr) = Bi(w + wi) — Bi(w) = Buwr 9)

independent of the optical frequency w.

Assuming for the moment that a solution to (7) is
available, the need now arises to find a relationship be-
tween the covariances I;; and some (as yet unspecified)
corresponding time-domain statistics. This relationship is
provided by [4, eq. (88)1:
2B

¥ duy .
(ar(23t) |*) = / 2—“- exp ( jot)
Y 2B m

@o+B-(wit]w1])/2 d
{ / 2 4Lz ;w,wl)} (10)

wo—B—(w1—lw1)) /2 “T

where ai(z;t) is a band-limited version of the kth mode
impulse response

wo-t+B dw
ar(z;t) = Re {2/ Ii(z;w) exp (jut) ;r}

wo—B

= Re {ax,(2;t) exp ( Jwot)}. (11)

The mean-squared envelope of the impulse response
(| ax, |*) is referred to as the kth mode “pulse response”
[47] and may be identified with what Marcuse refers to as
mode power.

Equation (7) is now written as

Alu/dz = — (o + Jou + Qi) Liw + 22 Paem® Tmm — i)

(12)
where
Qr = 2 (ham® — hum?). (13)

m#k
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Assuming a narrow-band excitation,

Kkm(wo + wl) o~ Kkmg + chmolwl

| 1K ime'/ Kimo | K 1. (14)
Subject to (14), it may be shown that [3]
' hin® = him? = 3Do | Kimy' [Por? (15)

hiom® = Pims. (16)

Substituting (15) into (13),

Qr = {3Do ‘;:k | Kimo' [*}eor® = quon (17)
From (9), (12), (16), and (17)
dl .
7 = — (ay + IBiaws + guw®) Liw + %: homo (Lowm — Tra).

(18)

Inspection of (17) reveals that g, = O for frequency-
independent coupling. With the definition

pe(zit) = {anlzt) [*)

for this special case, and applying (10) to (18) with
¢v = 0, one obtains

(9. + (1/v)d}pa(2;t) = —api + 2 hime(Pn — pr) (20)

(19)

the time-dependent coupled power equations for fre-
quency-independent coupling [2].

Assuming that the fiber is sufficiently long, Marcuse’s
perturbation solution to (18) with ¢, = 0 may be written
as

Iu(ziw,w1) = clw,w)Biexp (—az). (21)

The coefficient ¢(w,w:) is determined by the excitation,
B, is the steady-state mode power distribution, and a is a
complex propagation constant common to all modes [2].
It may be noted that the vector B; is normalized such
that chBk2 = 1,

It is now assumed that ¢; is nonzero, but sufficiently
small such that its effect on the solution for I, may be
adequately represented by a first-order perturbation cor-
rection to a. It may then be shown that

I (zw,01) = c(ww)Byexp (—az) exp (—qzen?) (22)

where
G = X Bigs. " (28)
k
It is seen that each g¢: is weighted by the square of the
corresponding mode power in forming the average ¢.
Since (21) -and (10) yield the solution to (20), it follows
from (22) and (10) that :
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(L aw, (z5t) 7y = pu(z;t) » F' {exp (—qeon®) ). (24)
The symbol # denotes convolution.

Assunming that the fiber is sufficiently long and that a
great deal of pulse broadening takes place in propagation
(i.e., that the input pulse width is much smaller than the
output pulse width), the pulse response’ for frequency-
independent coupling may be written as [2]

pi(z;t) = (bBi/AL) exp (—ag2) exp 1—— [t ;t/zz/v] } (25)

where o is an attenuation constant common to all the
mode powers, v is an average group velocity, At = 4 (awz)*/?
is the pulse width, and b is a constant.

It may be shown from (24) that (| a., [?) is obtained by
replacing At by (At)" in (25), where

(a)" = 4[ (a2 + @)2]"? = [(A1)* + 16¢2]72.  (26)

Nonzero K.’ causes the pulse width to be broader than
otherwise expected; the pulse widths of the individual
modes are still all the same, as for frequency-independent
coupling.

The above perturbation solution was compared with the
results obtained by Rowe and Young in their exact analy-
sis of the two-mode random waveguide [3]. Using [7], it
was found that (24) and [3, eq. (30) ], as prescriptions for
converting the pulse response for {requency-independent
coupling into that for frequency-dependent coupling, are
in exact agreement. This is somewhat surprising in view
of the fact that (22) results from a perturbation analysis,
while [3, eq. (30)] is the result of an exact analysis.
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