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Abstract—Marcuse’s time-dependent coupled power equations
are rederived so as to include the frequency dependence of the
coupling coefficients. For the case of white-noise coupling, the solu-
tion is then expressed simply in terms of that for frequency-inde-
pendent coupling.

T HE FOURIER transform of the electromagnetic field

in an optical fiber may be represented as an expansion

in the structure’s normal modes. The coefficients of this

expansion are called mode transfer functions.

lVIarcuse’s derivation of coupled power equations [1]

can be carried over step by step to derive an analogous

set of equations for the covariances of the mode transfer

functions

IM(Z;CLW1) = (Ik(z;co + cdl) I,* (z;@)). (1)

When this was done the following perturbation equation’s

were obtained:

dI,,
~ + (CQ + jm) Ikk = r112ti2D ~ { KkmU,K,~*I~m

m#k

– ;[I Kkmo, l’+ ] K,n l’]~kk)+ (2)

r, (LO) = cw + j~k (CO) is the propagation constant of the

lcth fiber mode in the absence of coupling. The subscript

COldenotes evaluation at (CJ+ W). ok (CJ,W) is defined by

h., = @k + ‘k. The cOuP@ coefficients Kwt have been

determined for both the dielectric slab [5] and round

dielectric fiber [6] and are independent of distance z along

the fiber.

It was first assumed that the physical imperfection

responsible for coupling the modes had a Gaussian-shaped

correlation function characterized by parameters ? and

D, respectively, therms amplitude and correlation length

of the imperfection [1]. Equation (2) was derived by

assuming D sufficiently small

I (~’ – 8z)D 1~,, <<1. (3)

Equivalent to the assumption of white-noise coupling,

(3) simplifies the calculations considerably.

Subject to (3), NIarcuse’s power coupling coefficients

become [5]

h% = #2@D I K,m 12= Do I K,- l’. (4)

Considering the h,~ as functions of frequency, the follow-
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ing arithmetic and geometric means are defined [3]:

hk” = * (h% -t- hkmu,) (!5)

hk~g = (hknhk@,) llZ = DoKk~*K~@, . (6)

The last identity in (6) follows from (4), (14), and the fact

that the Ktit are purely irnagkary.

Using (5) and (6), (2) becomes

dI,,
— = – (~k + juk)~,, + ~ { hkm’1~~ – h,~”I,,) .
d.z

(7)
m#k

It is now assumed that the lcth mode is far enough above

cutoff and tlhe range of w is sufficiently small such that

p, (LIO+ cdl) = /3,0 + 8,101, I w, I << coo. (8)

It follows from (8) that

uk(~,al) = @k(@ + al) — @k(@) = fikl@l (9)

independent of the optical frequent y a,

Assuming for the moment that a solution to (7) is

available, the need now arises to find a relationship be-

tween the covariances I,, and some (as yet unspecified)

corresponding time-domain statistics. This relationship is

provided by [4, eq. (88)]:

{J“’O+B-(@l+l@’1)/2 da
. ~ 4C~,k(~;@,@l)

}
( 10) “

wO—B—(wl-lull)/2

where a~(z ;t) is a band-limited version of the lcth mode

impulse response

= Re {ake (z;t) exp ( jcoot) }. (11)

The mean-squared envelope of the impulse response

(1 a,. 1’) is referred to as the kth mode “pulse response”
[4] and may be identified with what Marcuse refers to as

mode power.

Equation (7) is now written as

cZ1,,/dz = – (CW+ jr, + Q~’1Ik~ + ~ h,rn*(Im – 1~,)
m

(12)

where

Qk = ~ (ha” – hwz’) . (13)
m#k
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Assuming a narrow-band excitation,

K,m (ml + cm) = Kkmo + Kmo’w

/ QnKkmo’/Kk7llo 1<<1.

Subject to (14), itmaybe shown that [3]

h,%” – hkm’ s ~Do I Kkmo’ 12@12

hko N h~m,.

Substituting (15) into (13),

Qk = { +Po X / K~m,’ 12]w’ = ~w2.
$n#!+

From (9), (12), (16), and (17)

dI,,
— = – (CY, + jpk,w + (@.@lkk + z h,m(lmm
dz m
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(14)

(15)

(16)

(17)

I,,) .

(18)

Inspection of (17) reveals that q~ = O for frequency-

independent coipling. With the definition

Pfi(z;t) = (1 ak (.z;~) 12) (19)

for this special case, and applying (10) to (18) with

q~ = O, one obtains

{(32 + (1/v,) 13,}pk(z;f) = –a,p, + Z hww(% – P~) (20)
m

the time-dependent coupled power equations for fre-

quency-independent coupling [2].

Assuming that the fibei is sufficiently long, Marcuse’s

perturbation solution to (18) with q~ = O may be written,,
as

1,,(.2;0,ul) = c(w.u)B, exp ( –az). (21)

Tbe coefficient c (CO,LOJis determined by the excitation,

B, k the steady-state mode power distribution, and a is a

complex propagation constant common to all modes [2].

. It may be noted that the vector B, is normalized such

that z~B,2 = 1.

It is now assumed that q, k nonzero, but sufficiently

small such that its effect on the solution for Ikk may be

adequately represented by a first-order perturbation cor-

rection to a. It may then be shown that

1 ,,(z;~jal) = c(w,ou)B, exp ( –-cu) exp ( –@w2) (22)

where
~ = ~ B,’q,. (23)

k

It is seen that each q, is weighted by the square of the-.
corresponding !node power in forming the average ~.

th,e solution to (20), it followsSince (21 ) and (10) yield

from (22) and (10)’ that

(] a,, (z;t) p} = Pk(.z;t) * F-’{exp (–@-@ 1. (24)

The symbol * denotes convolution.

Assuming that the fiber is sufficiently long and that a

great deal of pulse broadening takes place in propagation

(i.e., that the input pulse width is much smaller than the
output pulse width), the pulse response’ for frequency-

independent coupling may be written as [2]

where cw is an attenuation constant common to all the

mode powers, v is an average group velocity, M = 4 (a2z) 1’2

is the pulse width, and b k a constant.
It “maybe shown from (24) that (1 a,, 12)is obtained by

replacing At by (At)’ in (25), where

(At)’ = 4[(cw + ij)z]lj’ == [(At)’ + 16@]’/2. (26)

Nonzero K,%’ causes the pulse width to be broader than

otherwise expected; the pulse widths of the individual

modes are still all the same, as for frequency-independent

coupling.

The above perturbation solution was compared with the

results obtained by Rowe and Young in their exact analy-

sis of the two-mode random waveguide [3]. Using [7], it

was found that (24) and [3, eq. (30) ], as prescriptions for

converting the pulse response for frequency-independent

coupling into that for frequency-dependent coupling, are

in exact agreement. This is somewhat surprising in view

of the fact that (22) results from a perturbation analysis,

while [3, eq. (30)] is the result of an exact analysis.
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